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Short Papers

An Expansion for the Fringing Capacitance

HENRY J. RIBLET, FELLOW, rmw

A&ract-l%e fimt twelve terms hi an expansion of the %pproxfrnate

frfnghrg capacitance” in powem of exp (– m/b) are given expfidtly as

fanetfone of Z/b, Comparison with exact values show agreement withfn
0.06 peroent for s/b> 0.2 and t/b< 0.5. In the extreme ease cmssider@
s/b=O.l and t/b=O.5, the error fs leas than 2.3 percent.

INTRODUCTION

The ‘{approximate fringing capacitance” CjO, as defined by

Cohn [1] and Getsinger [2] is useful in a number of ways in the

approximation of the capacitance of certain rectangular coaxial

structures. Explicit formulas for it have been given by Cockroft

[3], Getsiuger [2], and Riblet [4]. These formulas express CA in

terms of two independent real parameters a and k. The normal-

ized geometric parameters, t/b and s/b of Fig. 1 are also given

in terms of these parameters, but, before C;O can be found for a

given geometry, these equations must be inverted in some way

and a and k determined for the given values of t/b and s/b.

Heretofore this determination has required some form of

graphical or numerical trial and error process. Recently, Riblet

[5], however, has shown how for large values of s/b, these

equations can be inverted. In this note these values for a and k
are substituted directly in the formula for CjO and an exp~sion

obtained for C~Oin powers of exp ( – m/b), whose coefficients
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Fig. 1. Fringing capacitance cross section.

are given functions of t/b, which has useful accuracy for s/b as

small as 0.1.

T= PROBLEM

It is not difficult, following Bowman [6] to express the quanti-

ties b,s, and t, of Fig. 1, except for a scale factor, in terms of two

independent reaf parameters a and k, where k is the modulus of

the Jacobi elliptic functions involved. It is no restriction to

assume that O<k< 1 and O<a<K. Then

b=2K
(

snadna
—–Z(a))–*+n-

cna
(1)

{

snadna
s=2K — - Z(a))

cna
(2)

t=2K’
{

snadna
—–Z(a))–~.

cna
(3)

The approximate odd-mode fringing capacitance, CjO for this

geometry is given in terms of the same parameters a and k by
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the expression

–Iog(ksnacna) -210g(On(a)) ). (4)

Here the functions are all those which are familiar from Jacobi’s

theory of elfiptic functions and O.(a)= @(a)/O(O). Now since we

have ma== H(a)/fi O(a) and ma= fl Hi(a)/fi $(a) by

Hancock [7, p. 244] and 8(0)=_ by Cayley [8, p. 149]

(4) may be written

c~=:(( snadna
(K-a) ~ - Z(a)

)

(–log ~
))

H(a)kfl(a) . (5)
2K~

Now it is clear from (1) and (3) that

snadna (K–a)t+ab— – Z(a)= 2K&r
{ )

T /3-1

ma b–t ‘~ 2 + 2~K’

(6)

if ~= 1/(1 – t/b). SO that

(–log ~ )}H(a)kfl(a) . (7)
2K~

l%us Cl has been expressed entirely in terms of the Jacobian

l%eta functions, H(a) and H,(a) and the parameters a, k, and

t/b. Then introducing p = exp (– n-(K– a)/K’) as defined in [5]

and substituting

()H(a)kll(a) = * exp –*;
H(ja,k’)O(ja, k’)

j
(8)

as given by [7, p. 296], equation (7) becomes

Now from [7, p. 238],

Zq, 1/4

H(ja, k’)= – ~ (sinhv’ – q’2sinh3v’ + q’Gsti$v’ – 4’lZ

.sinh7v’+ q’20sinh9v’+ .0. )

O(ja,k’) = 1– 2q’cosh2v’ +2q’4cosh4v’ –2q’9

.cosh6v’+2q’i6cosh 8v’+ . . . (10)

where v’= rra/2K’. Then substituting, the form of C;’ usefuf for

finding the desired expansion is

2

{

B–now-log*
C;. = ; ——

2

–k3ge-(’’a/2F)(sinhv’ – q’2sinh3v’+ . . . )

–log(l –2q’cosh2v’+2q’4 cosh4v’+ . . . )). (11)

How an expansion for p in powers of q’ can be obtained was

the principal result of [5]. The expansion for nq’1/4/K’l/%’ in

powers of q’ can be determined from [7, pp. 241, 400]. ‘I’he last

two terms of (11) can be expressed as power series in q’ whose

coefficients contain positive and negative powers of p. Thus

these terms as well can be expressed as powers series in q’ whose

coefficients are functions of t/b. Having found then a power

series in q’ for C;O it only remains to return to [5] where it was
shown how q’ can be expressed as an odd power series in

exp( —rrs/ b). When this series for q’ is substituted in the series

akeady found for C~Oin terms of q’> the desired result is ob-

tained.

~Ell? ~SULT

Determining the first four terms of the desired expansion by

explicit derivation was carried through without any speciaf &ffi-

culty and revealed the general form of the coefficients. These

terms, however, become increasingly involved and the results

might not warrant the manual labor that would be required.

Consequently the majority of the terms were obtained by curve

fitting with the help of a digital computer.

It was found that

D=(fl+l)’+~/~(fi-1)1-l/@

~+~log(p+l)– zA~= y @log(p–l)

A1=4/32

A2=4/12(@+l)

A3= $/32( f14+3)

A4=4/32(fi6+3&- fi2+13)

A5= :~2(3~8+70~4– 120~2+ 175)

A6=$p2(blo+3ps–6p6 +lo2p4–203@2+231)

A7=#~2(3@2+231f& 1176~6

+4305f14– 6664~2 i-4837)

A8=; ~2(3~14+21@ 12–69fi 10+ 1989f18– 10 479/36

+31 84764–45 135 f12-!-27 967)

A9= ;~2(13/31% 1764/312– 18 288/310

+ 125 766/3s –458 592@

+977 940~4– 1092 528~2+529 461)

A10=+p2(9p 18+45 p16–3w@14+165wfi~2

– 163 170~ 10+928 10fls

–2 981 020~6+5 594852~4

–5617375~2+24Hj 965) (12)

All = #@2(45 f120+ 15 675P 16–261 360~ 14+2 937330~ ‘2

– 1 8857520j3 10+75 379590@s– 187182 160&

+ 283 129297fi4– 237922 960/32+86 694 223].

Table I gives the exact values of C~Ofor a range of values of

t/b <0.5, for s/b = 0.1, 0.15, and 0.2 together with approximate

values obtained from (12). ‘The upper figure in each group is

exact, the next figure is given by (12) while the bottom figure

neglects A, ~. R is clear that C~Ois given with increasing accuracy

by (12) as s/b increases zmd t/b decreases. Even in the extreme
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TABLE I
ExAcr ANDAPPROXIMATE C;O

t/b ~b

.1 15 2

2,26132 1,72183
.1

1.42231

2.23063 1.71846 1,42189

366637 2.63689 20S720
25

3.59531 2.62912 2.09625

597022 4.13495 3.20397

.5 5.83221 4.11s90 320213

5.78035 411069 3.20049

ease, where s/b = 0.1 and t/b= 0.5, the accuracy is comparable

to that achievable with Getsinger’s charts [2], and more than

adequate for most engineering purposes.

The coefficients of ~~ are all given in integraf form and are

believed to be those which one would have obtained had they

been derived by step-by-step algebraic substitution. In the pro-

grams used an error of only one in the nine place integers is

easily detected. It was reassuring to find, however, that after the

coefficients had been determined, that terms by term (12) ap-

proaches the known limit,

– ; log
(1 -exp(-m/b))

2

aa t/ b~O, although this value of t/b was not used in the curve
fitting process by which they were found.
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Diathermy Applicators with Circular Aperture and

Corrugated Flange

MARIA A. STUCHLY, SENIOR MEMRER, IEEE, STANISLAW S.

STUCHLY, SENIOR MJWREK IBEE, AND GIDEON KANTO~

SENTORhfRMBB&IS13B

Absttwd-A dedgrt method and experimental tits for a dkect-eon-

taet eireubu apertwe applicator are provided. l%e aperture ts exefted in

the T&nlndq acOrrugatedflange surroundhlg the Rpertwefmpreveatlte
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mdfortttfty of the fleatfng pattern and fhnits k%kafge. The petiornuulze of

the Rf)pk@M’8 operating fo the S baad (2.45 GHz) and tbe X band

(9.96 GHs) has been tested wifng a short monepele probe and a tlwmne-
graptdc camem. 'Ilzebeating patterns obtafned bythetwemethotts arein

-merit - * e~bntal errors. ‘llte apptfcators are suitable for
eflnieni IBE+as they are lightweight and ngge4 and capable of delivee a

dealred energy dose effectively, thanks to a refatfvely smalf Stand@-wave

ratio (SWR <2) and very low leakage.

I. INTRODUCTION

Numerous microwave diathermy applicators have recently

been developed [1]-[6]. This has been prompted by some indica-

tion that locaf hyperthermia induced by microwave energy may

be used in the treatment of certain malignant tumors. Also, the

requirements of the proposed U.S. draft standard for microwave

diathermy equipment [7] and the proposed Canadian regulations

for these devices [8] require new design approaches as follows: 1)

effective heating in the plane parallel to the applicator aperture;

2) deposition of microwave energy at a required rate in muscle

or tumor with minimal heating of fat and skin or tumor

surrounding tissues; and 3) minimum leakage. The first objective

can be met by selecting appropriate aperture size and operating

frequency. The penetration depth and the resulting “in-depth

heating” of muscle are primarily determined by the frequency of

operation [2], [3], [9]–[ 11]. However, the relative dimensions of

the radiating aperture (as compared to the wavelength) also play

a significant role in the determination of the in-depth heating

profile. For instance, for a rectangular aperture it was found that

the optimum profile (i.e., providing the minimum ratio of fat-to-

muscle heating, and deep muscle heating) is obtained when the

aperture height is between one and two wavelengths and the

width about one wavelength in fat, assuming a TEI ~-mode

distribution on the aperture [2], [11].

The heating profile in the plane parallel to the aperture is

determined by the dimensions and the electric-field distribution

on the aperture. The immediate surroundings of the aperture

(flange) also affect the profile. To obtain symmetrical heating,

cross polarization and circular polarization have been employed

[1], as well as dielectric loading [12], [13] and multimode opera-

tion [4].

In this paper the design and experimental results for a corm-

gated flange applicator are presented. Two methods, namely a

thermographic camera technique [1], [10] and a short E-field

probe method [14] were used to determine the heating patterns

of the applicators operating in the ~ band (2.45 GHz) and the X

band (9.6–10 GHz). A comparison of the two methods is given.

II. APPLICATOR DESIGN

Two applicators, one operating at a frequency of 2.45 GHz

and one operating in a frequency range 9.6-10 GHz have been

designed. The design procedures described here can be in princi-

ple used also at lower microwave frequencies where deeper

penetration of microwave energy is possible. An applicator oper-

ating at 915 MHz is presently being investigated. External views

of the applicators are shown in Fig. 1. A circular aperture, and

the fundamental mode (TEl J in the waveguide and on the

aperture were employed. The waveguide is terminated by the

eormgated flange consisting of four grooves.

Selection of the diameter of the waveguide and the radiating

aperture (D) is based on the following considerations. The

frequency of operation must be above the cutoff frequency of

the fundamental mode, and preferably it should be below the

cutoff of the next higher order mode Q%&). For antenna beam
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